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ABSTRACT 

NSI has developed a high precision articulated swing 

arm system for millimeter wave spherical near-field 

measurements. This paper presents this system along 

with structural analysis and characterization, and 

explains what error corrections are performed in order 

to produce high accuracy results. Both simulated and 

measurements are shown to demonstrate the 

effectiveness of these correction measures. 

 

 

1. INTRODUCTION 

With increasing demand for integrated low directivity 

mm-wave antennas and on-chip devices, the need for 

accurate antenna pattern measurements on those 

antennas increases. Spherical near-field (SNF) testing is 

ideal for this sort of antenna as it samples the fields on a 

(almost) closed surface around the antenna under test 

(AUT). A complication is that the antennas call for low 

profile feeds, such as wafer probes, to avoid the need for 

an invasive, electromagnetically large connector in 

close proximity to the antenna. This imposes the 

additional requirement of measuring the antenna in an 

inertial frame of reference. 

The NSI-700S-360 spherical near-field antenna 

measurement system was designed to accommodate 

these measurements. As the rigidity of the structure is 

bound by physical limitations, some positioning errors 

are expected, and these have been modelled and 

characterized ([1, 3]). In [2] and [3] it is shown that the 

radial error is the dominant error term which needs to be 

characterised and compensated for, and a first method to 

accomplish that is demonstrated, further results of 

which are shown in [4]. 

This paper describes a convenient way to model the 

radial error data for further use in antenna measurement 

error correction, allowing smart interpolation and some 

error filtering. Furthermore, a method to evaluate the 

effectiveness (and potentially to enhance that) of the 

radial error correction is introduced. 

 

2. SYSTEM DESCRIPTION 

Fig. 1 presents a schematic representation of the new 

SNF antenna test system. This system comprises a 500 

mm diameter rotation stage mounted on a large floor 

stand and vertical tower. This positioner defines the 

horizontal ϕ-axis of rotation and is coincident and 

synonymous with the z-axis of the spherical 

measurement coordinate system. A second rotation 

stage is affixed to this stage at an angle of 90 to the ϕ-

axis and this stage forms the -axis of a conventional 

right handed polar spherical coordinate system. A third 

rotary stage is attached to the -stage, again, at an angle 

of 90 only this time to the -axis and this third stage 

forms the -axis (i.e. polarisation axis). The combined 

motion of the ϕ and  stages allows the probe tip to 

describe a path over the surface of a conceptual 

spherical surface centred about the intersection of those 

orthogonal axes and whose definition is in accordance 

with standard SNF theory. Crucially, and as is the case 

for conventional planar near-field measurements, data is 

acquired across a two-dimensional sampling interval 

with the AUT remaining entirely at rest for the duration 

of the measurement, a feature of particular importance 

when measuring very delicate probe-fed antennas which 

are prone to suffering changes in electrical excitation 

resulting from mechanical disturbances, e.g. vibration 

etc.. 

 
Figure 1, CAD rendering of the articulated spherical 

near-field antenna test system (NSI-700S-360) with 

associated measurement axes shown. 
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The NSI-700S-360 system is sufficiently large to 

incorporate mm-wave frequency up and down converter 

modules as part of the probe carriage assembly whilst 

maintaining a probe tip radius of approximately 500 

mm, with the exact value depending upon the length of 

the specific mm-wave module and probe. The mm-wave 

modules are exchanged to cover the relevant waveguide 

frequency bands, leaving the remaining RF equipment 

rack and cabling portion of the RF sub-system intact, 

making for a convenient modular and upgradable test 

system that can span huge frequency ranges from a few 

GHz to sub mm-wave frequencies. Each of the rotation 

stages contain integrated RF rotary joints to maximize 

phase stability of the guided wave path across the 

sampling interval, with the ϕ-axis positioner also 

containing a multi channel slip-ring assembly for 

passing power and control lines to successive 

positioners. Figs. 2 and 3 show the SNF system at 

various  and ϕ positions. 

 
Figure 2, CAD rendering of NSI-700S-360 with probe 

at (θ, ϕ) =(135°,0°). 

 
Figure 3, CAD rendering of NSI-700S-360 with probe 

at (θ, ϕ) =(135°,-90°). 

 

3. MODEL FOR RADIAL ERROR 

As is the case for all antenna test systems, the NSI-

700S-360 is subject to a range of potential error sources.  

Here, however, it has been shown that the radial 

distance error is one of the more important terms within 

the facility level uncertainty budget [2, 3]. Thus, during 

the manufacture and installation of this class of system 

the radial error map is acquired and recorded using 

optical coordinate measuring instrumentation. Figs. 4, 5 

and 6 present the radial error for three NSI-700S-360 

systems with the data being presented in the form of a 

false colour checkerboard plot where the data is 

tabulated on a plaid monotonic and equally spaced 

spherical grid. The colour range denotes radial error 

between about -2 mm to + 2mm. 

 
Figure 4, Radial error of System A as function of (θ, ϕ). 

 
Figure 5, Radial error of System B as function of (θ, ϕ). 

 
Figure 6, Radial error of System C as function of (θ, ϕ). 



 

From these figures it is clear that there is a common 

underlying behaviour of the radial error, especially for 

varying ϕ values. An even clearer representation of the 

behaviour of the error as a function of ϕ (for various θ-

angles) is presented in Figure 7. 

 

 
Figure 7, Measured radial error of system A as a 

function of ϕ for different values of θ. 

Here, it is readily observed that the radial error behaves 

as a function of the spherical angles and can be 

modelled as 
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In order to determine the bias (δR0()), amplitude (A()) 

and ϕ – offset (ϕ0()), this formula is rewritten as 
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which is a more convenient form for determining the 

coefficients δR0(), As() and Ac(). These coefficients 

can then be found by minimizing the RMS difference 

between the measured and the modelled data, using the 

formulation from Eq. 3 which is in accordance with the 

principle of least squares 
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After converting As(), Ac() to A() and ϕ0() using 

common trigonometric identities, for the mechanical 

system in our example this results in the parameters as 

shown in Figure 8. 

 

 
Figure 8, Parameters for the radial error vs ϕ curves as 

a function of θ. 

The radial errors can therefore be modelled using these 

parameters. The result is shown in Figure 9, which can 

be compared directly to Fig. 7. 

 

 
Figure 9, Modelled radial error of system A as a 

function of ϕ for different values of θ, using parameters 

from Figure 8. 

The residual error (i.e. difference between measured and 

this modelled radial error) is shown in Figure 10. 

 



 

 
Figure 10, Residual error (difference between measured 

radial error and modelled radial error) as a function of 

ϕ for different values of θ. 

This analysis was performed for the three systems 

shown here and in all instances residual errors were 

found to be within a ±0.05 mm bracket. The curves 

depicted in Fig. 10 represent a worst case, indicating 

that the underlying functional form remains consistent 

across the various systems. 

 

SNF measurements require data to be taken precisely 

and accurately on a raster grid at (θ, ϕ) positions that are 

dictated by the frequency and the shape, size and 

location of the device under test. As these parameters 

will vary, it is not practical to perform deformation 

characterization at each and every possible (θ, ϕ) 

position to be used. As such, the modelling approach 

presented here for the mechanical data is needed in 

order to efficiently compensate measured data. The 

modelling as introduced has the benefit that instead of 

using generic interpolation [5] of a relatively course grid 

of measured mechanical data, e.g. with the use of 

generic piecewise polynomial interpolation, radial errors 

are now calculated from a model that has a natural link 

to the topology of the mechanical system, and the 

parameters of which are still based on actual mechanical 

measurements. The fact that the parameters in this 

model are determined using the principle of least 

squares minimizes the impact of random errors and 

localised noise. Thus, some filtering of the mechanical 

data is inherently included. 

 

4. ELECTRICAL VERIFICATION 

After having modelled the radial error (a radial error can 

now be calculated at every ϕ-position using Eq. 1 and 

properly interpolating the parameter curves, cf. those 

shown in Figure 8), the radial error characterization can 

now be used to compensate the phase of spherical near-

field antenna measurements [1, 4]. For this, the radial 

error for the applicable (θ, ϕ) position is multiplied by 

the wavenumber and subtracted from the measured 

phase to provide a first order correction for the 

imperfections in the spherical sampling surface. 

Typically, SNF antenna measurements have some 

inherent redundancy, and often a θ-cut is recorded for ϕ-

values which are displaced by 180° (typically the first 

and last cut of a measurement). These cuts can be used 

to perform a self-alignment of the mechanical system 

(see [6]). This method can also be applied to verify the 

effectiveness of the radial error correction as presented 

here. Figure 11 and Figure 12 demonstrate this for a 

measurement taken on System A. Figure 11 shows the 

differences of the phase of the θ-cuts at the first and last 

ϕ-position (in red) and the curve of the associated error 

model (in blue) before applying the radial error 

compensation, showing a corresponding non-

intersection error of 0.6 mm. At the frequency of the 

shown measurement (110 GHz), this would correspond 

to a non-intersection error of almost 80° of phase, which 

would render this measurement severely compromised. 

After applying the compensation (curves shown in 

Figure 12), the corresponding non-intersection error is 

reduced to 0.05mm (7.13° of phase at 110 GHz), which 

makes this a very perfectly acceptable near-field 

measurement.  

It should be noted that the large excursions at the edges 

of the red curves in Figure 11 and Figure 12 are due to 

the low levels of the amplitudes in those directions. 

 

 
Figure 11, Non-intersection assessment prior to 

compensation of the radial error. 
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Figure 12, Non-intersection assessment after 

compensation of the radial error. 

 

The presented assessment method can be expanded to 

cover multiple ϕ-positions, so that a rigorous health 

check (and possibly even a self-correction) of the 

system can be done without the need to set up an optical 

measurement instrument. 

 

5. ANTENNA MEASUREMENT RESULTS 

As a final verification of the effectiveness of the 

modelled data and position correction algorithm, actual 

processed SNF measurements are shown in Figure 13 

and Figure 14. Here, the phase correction resulting from 

the modelled interpolation is shown side by side with 

the results of the conventional phase correction (using 

direct piecewise polynomial interpolation of the radial 

error data) as presented in [2], as well as no phase 

correction at all. Fig. 13 shows the principal plane 

radiation patterns for a horn antenna measured at 110 

GHz and Fig. 14 shows the orthogonal plane cut. In 

both instances the SNF data corrected in phase for radial 

distance variation, are markedly improved in contrast to 

the uncorrected case. However, both interpolated 

correction approaches seem to perform well and provide 

results that are indistinguishable (blue and red curves). 

It can be stated that the modelling approach presented 

here provides a robust and efficient interpolation 

scheme that allows for calculation of radial distance 

phase correction on any SNF sampling grid. The 

method should be less sensitive to the effects of random 

measurement errors within the optical coordinate 

measurement grid. 

 

 
Figure 13, Comparison between correction based on the 

modelled radial error, correction based on the directly 

interpolated radial error and no correction (ϕ=0°). 

 

 
Figure 14, Comparison between correction based on the 

modelled radial error, correction based on the directly 

interpolated radial error and no correction (ϕ=90°). 

 

6. CONCLUSIONS AND 

RECOMMENDATIONS 

An effective way to model (and therefore to interpolate) 

radial error measurements on an NSI-700S-360 was 

presented, along with an effective evaluation method. It 

was shown that using the error data results in good final 

results for processed antenna measurement data at 110 

GHz and a way to improve the spherical alignment of 

the system. 
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It is intended to implement an extended health-check 

verification method based on the spherical alignment 

method as described in [6]. Also, further investigation 

into the behaviour of the parameters as a function of θ-

angle is planned, with the possibility that this eventually 

will give more accurate and/or easier to obtain (radial) 

error data for the NSI-700S-360 system. 
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