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Abstract— This paper describes a novel method termed the 
IsofilterTM Technique, of isolating the radiation pattern of an 
individual radiator from among a composite set of radiators 
that form a complex radiation distribution.  This technique 
proceeds via three successive steps: A spherical transform on 
an over-sampled data set, followed by a change of coordinate 
system followed in turn by filtering in the domain of the 
spherical modes to isolate a radiating source.  The result is an 
approximate pattern of the individual radiator largely 
uncontaminated by the other competing sources of radiation.   

Keywords- near-field scanning; spherical near-field; modal 
filtering; antenna diagnostics. 

I. INTRODUCTION 

Recently, we have developed a filtering technique that 
provides for suppression and elimination of the effects of 
unwanted extraneous signals from the patterns produced in 
spherical near-field scanning. [1] The three successive steps 
in this method are first to sample (or over-sample) in the 
scanning data domain and transform to the far field, then to 
effect a translation of the coordinate origin, and lastly to 
filter in the domain of the spherical modal coefficients as the 
far-field pattern is re-computed.   It is a straightforward 
extension of the usual spherical modal domain filtering.  We 
have given the name "IsoFilterTM " to this sequence of steps. 

 The IsoFilter�� technique allows us to apply modal 
filtering to any sub-sphere contained within the measurement 
sphere.  As is well known, the increasingly higher modes 
correspond to increasing radius from the spherical near-field 
(SNF) coordinate origin.  Reconstructing the pattern using 
only lower-order modes leaves out the interference from 
radiators outside that sphere which corresponds to the modal 
order chosen.  

II. METHOD OF TRANSLATING THE ORIGIN OF THE 
COORDINATE SYSTEM COMPUTATIONALLY SELECTING A 

TEMPLATE (HEADING 2) 
The method by which the coordinate origin is translated 

is based upon a very general theorem well known to all who 
have studied electromagnetics:  In the asymptotic limit as the 
distance from a source of radiation becomes infinite, the far 
electric and magnetic fields separate into a product of a 

simple scalar function of the distance r and a vector function 
of direction:  

 
(1) 

 
The SNF transform yields the quantity ),( φθF

�
, whose 

magnitude is not modified by a shift of coordinate origin.  
Furthermore, in the limit the amplitude factor kr1 is not 
changed either.  If we want to find the far electric field in a 
coordinate system that is shifted along the z-axis by a 
distance d0 we have only to modify the phase factor.  Please 
see Figure 1.  The difference in the distance to the far-field 
sphere from the measurement origin as compared to the 
translated origin is simply 

 
 (2) 

 
 

If we substitute from this equation (2) into (1) above, making 
use of the relations  

 
(3) 
 

we find we can write, in the translated coordinate system that  
 

(4) 
 
 

where 
(5) 

 
 

To accomplish the translation, we simply modify the phase 
of each point in the far electric field by the amount 
corresponding to the distance appropriate for the angle θ  at 
which that point lies. 
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Figure 1.  Schematic Illustrating Difference in Distance to Far-Field 

Spherical Surface from Origins of Coordinate Systems Located at Center of 
Ground Plane and Center of Horn Aperture 

III. CHAMBER SIMULATION OF ANTENNA ABOVE A 
GROUND PLANE 

To simulate the configuration of an antenna-above-a-
ground-plane we at MI Technologies set up in a small 
chamber a model of this configuration.  A photograph is 
shown below in Figure 4.  A horn centered 6 inches above 
the ground plane is shown.  The diameter of the ground plane 
was 36 inches.  The frequency of the radiation used for these 
tests was 8 GHz.   

 

            
 

Figure 2.  Photograph of Spherical Near-Field Pattern Measurement Range 
with a Pyramidal Horn  Antenna Above a Ground 

Figure 3.  Photograph of the Configuration for Measurements of the Bare 
Pyramidal Horn Antenna Decoupled by Absorber  

from the Ground Plane 

The result of the pattern measurement of the horn plus 
ground plane using the spherical near-field technique is 
shown in Figure 3.  The broad symmetric pattern with ripples 
imposed by the secondary sources is immediately evident.  
Compare this to Figure 4, where the same cut is shown after 
applying the IsoFilter����������technique; there the pattern appears 
with the interference eliminated. 

When the ground plane was covered with absorber and 
the resulting unfiltered pattern compared to the filtered 
pattern with the ground plane uncovered, the agreement 
between the two patterns lead to our conclusion that the 
modal filtering is very effective at isolating the horn from the 
ground plane. Please see Figure 6. 
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 ElBar:90.0 Freq: 8.000 GHz  
Figure 4.    Azimuth Cut of Horn Mounted Above a 36 inch Diameter 

Ground Plane  
( Scale: Vertical  40 dB; Horizontal � 90°) 
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Figure 5.  IsoFiltered�� Azimuth Cut of Horn Mounted Above a 36 inch 
Diameter Ground Plane  

( Scale: Vertical  40 dB; Horizontal � 90°) 
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Figure 6.  IsoFilter��’ed Azimuth Cut of Horn Mounted Above a 36 inch 
Diameter Ground Plane versus Horn Mounted Above a 24 inch Square of 

Absorber  
( Scale: Vertical  40 dB; Horizontal � 90°) 

We also applied the technique to the more difficult case 
of a horn mounted well off the center of the ground plane 
and found the technique to be similarly effective at reducing 
the effect of electromagnetic coupling between the radiating 
horn and the nearby ground plane. [2]   

 



IV. THE ISOFILTER REJECTION CURVE 

To understand better the limitations of the IsoFilterTM 
Technique we at MI Technologies have developed and 
investigated the idea of the 'rejection' curve.  [3] 

We start with a small antenna at the origin, then apply a 
succession of IsoFilter�� spheres whose centers progress 
along a coordinate axis.  Once the filtering sphere no longer 
contains any radiating sources, any reported signal represents 
interference that would add to the desired signal from an 
antenna located inside the filtering sphere.  This approach 
was taken using measured data.   

We demonstrate with measured data an empirical 
procedure by which we may quantify the degree of rejection 
offered by the IsoFilter™ method.  Recall first the 
configuration of the spherical near-field range on which the 
measurements for demonstrating IsoFilter™ were taken.  It 
consisted of a roll-over-azimuth positioner with a fixed probe 
antenna.  The pyramidal horn antenna was mounted above a 
ground plane, offset by 6 inches along the roll axis.  The roll 
and azimuth axes crossed at a point that lay precisely upon 
the ground plane surface.  Please see Figures 2 and 3  for 
photographs of the setup, where the horn is centered above 
the ground plane on the roll axis.  The ground plane was 
covered by a panel of absorber to form a measurement 
configuration  we refer to as the “bare horn” configuration, 
shown in Figure 2.   

It was demonstrated earlier that the IsoFilter™ technique 
provided a pattern measurement result of the horn above the 
ground plane that agreed well with the measured pattern of 
the bare horn.  We use the bare horn pattern data taken 
earlier as the basis for ascertaining a quantitative measure of 
the degree of rejection provided by IsoFilter™. 

A spherical isometric plot showing the measured forward 
hemisphere is provided in Figure 7. 

 

Figure 7.   Spherical Isometric Plot of Forward Hemisphere of Bare 
Pyramidal Horn 

After translating to the center of the aperture of the horn, 
the spherical modal distribution occupies modal bins that 
extend only up to modal order n = 5, for a 30 dB dynamic 
range as shown in the tabulation exhibited in Figure 8.  

Figure 9 below illustrates the process we used to 
determine the IsoFilter™ rejection curve for the measured 
horn data.  The IsoFilter™ sphere was translated along the X 
axis from 0" to 18" in 0.1" steps. 

For translations large enough that the horn is no longer 
contained in the IsoFilter™ sphere, the desired transform 
output should contain zero power.  Any power reported in 
those outer spheres therefore represents imperfect rejection.  
If there were a source contained in a particular IsoFilter™�

 

Figure 8.   Summary Tabulation of Accumulated Power in Spherical 
Modes for Bare Horn with Origin Centered at Aperture 

 

Figure 9.  Locus of Points Where IsoFilter� Rejection Was Evaluated 

sphere, then the signal returned by this procedure represents 
the intensity of that source. The sequence of translations 
corresponds to points along the x-axis of the measurement 
coordinate system, which lies in the H-plane of the horn.  
The data were measured at 8.0 GHz, so the 0-18" translations 
corresponded to approximately 0-12.2 wavelengths.  This is 
to be compared to the 3 inch − i.e. 1½ wavelength − lateral 
dimension of the H-plane of the pyramidal horn.  

The IsoFilter� technique was applied over and over in 
steps of 0.1", and the level of the accumulated power in 
spherical modes corresponding to modal orders 1 through 5 
was plotted as a function of translation distance.  The result 
is shown in Figure 10. Of most interest is the case for  n=1. 

 

H-Plane IsoFilter™ Rejection of Measured Horn Data
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Figure 10.  IsoFilter� Rejection of Measured Horn Along x-Axis.  Plot of 
Normalized Total Power versus Radial Distance of Filter Sphere from 

Center 



V. THEORETICAL DESCRIPTION OF REJECTION CURVE 
AND APPLICATION TO ANTENNA DIAGNOSTICS 

Beginning with the standard expression for computing the 
electric field outside the region containing a set of sources, 
we find the well-known expression for calculating the 
electric field as a sum over vector modes. [4], [5] In the 
language of the spherical near-field scanning literature, one 
may write for the electric field outside the source region as a 
sum of complex coefficients )3(

smn
Q and outgoing spherical 

vector modes  )()3( rFsmn
��

: 
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This equation underlies all of spherical near-field scanning.  

In his Appendix A1.5, Hansen shows how one may 
utilize the reciprocity theorem to obtain from the current 
distribution(s) an expression for these expansion 
coefficients, Qsmn.   [5]    The result is  
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Note that this is a spatial integral over a spherical volume.  
If one knows the mathematical form of the prescribed 
current distribution(s), then the expansion coefficients may 
be computed from this equation.  

Interpretation of this equation may be pursued from a 
knowledge of the form of the two types of vector wave 
functions that are used in the expansion.  Hansen's spherical 
wave functions are simply the Stratton spherical wave 
functions, made into complex functions by allowing m to 
take on both positive and negative values and renormalized 
in a manor unique to Hansen for spherical near-field theory.  

Direct evaluation of the integrals in equation (8) to obtain 
the smnQ  is difficult in general.  One may gain some insight 

into the trend as n increases toward larger and larger values 
by examining the behavior of the radial parts of the 
spherical functions.  In cases where the current sources are 
strongest at some distance from the origin, one generally 
would  expect the smnQ  to peak once the maxima of the 

radial functions approach the region of strength.  Rather 
than looking at this behavior in detail, we proceed with an 
heuristic alternative.  

We now define an effective current  which concentrates the 
average value at the origin  

)'(  )'( rVJrJ AveEff ����
δ≡       .                      (9) 

Continuing to evaluate equation (8) we choose to neglect 
the possibility of magnetic sources being used in the 
modeling and rewrite (8) as follows with the help of (9).  
Please see  equation (10) which evaluates to zero except 
when s=2, n=1; there are only three non-zero coefficients 
Qsmn, corresponding to m= -1, 0, +1. 
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From Hansen's Appendix, A1.5, equation (18) above which 
is expressed in spherical coordinates may also be expressed 
in Cartesian coordinates: 
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Thus the only non-zero coefficients, for s=2; n=1, and  
m= -1,  0, +1. 
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These equations can be inverted to yield the average current 
values associated with the particular coordinate origin.  In 
general they are a function of the particular origin which is 
varied by the use of the IsoFilterTM translation, Isor

�
so they 

need to be written as functionally dependent upon the 
location of the coordinate origin:  
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This result giving the source intensity versus location (of the 
translated origin) can form the basis for antenna diagnostics. 
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