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ABSTRACT 

We review two conventional algorithms for aperture 
back-projection from spherical near-field data, with 
the goal of quantifying array-element excitations.  The 
first algorithm produces that portion of the near field 
that radiates to the far field.  The second algorithm 
divides out the element pattern prior to the 
transformation, and produces an estimate of the 
element excitations.  We introduce a variation of this 
element-excitation algorithm that, for some arrays, 
can improve the fidelity of this conventional estimate.  
We apply the three algorithms to measured data, 
where the algorithms’ assumptions are tested, and to 
synthesized data, where the expected results are 
known exactly.  For the array geometries measured 
and simulated, this new algorithm shows dramatic 
improvement. 

Two of the three algorithms require an estimate of the 
element pattern, which they assume to be common to 
all the elements.  We describe our measurement of our 
array’s element pattern, as well as the use of the 
IsoFilterÔÔÔÔ   to center the element pattern and limit the 
edge effects. 

Keywords: Aperture Back-Projection Imaging, Element 
Diagnostics, Spherical Near-Field Scanning, Phased Array 
Testing. 

1.0 Introduction 
The testing of a phased-array antenna usually includes 
calibrating the complex excitations of the various 
elements for different commanded beam states.  Two 
aperture back-projection methods are commonly used to 
assist in this calibration, with one algorithm yielding the 
portion of the aperture’s near field that radiates to the far 
field, and the other yielding an estimate of the individual 
element excitations.  Unfortunately, the fidelity of each 
technique often falls short of the calibration requirements. 

Our interest in this problem was stimulated by our 
curiosity regarding a fixed flat plate slotted waveguide 
array that we have on hand here at MI Technologies.  
Measurements of the far-field pattern of the array and the 

element pattern were carried out using spherical near-field 
scanning on several different ranges and under differing 
conditions.  Consistent results have been obtained and 
published showing that back-projection to obtain the 
aperture field is a robust and stable process using 
spherical near-field scanning [1].  However, the 
limitations of resolution have made the results 
unsatisfying and we therefore have investigated further the 
question of how to resolve, unambiguously and uniquely, 
the excitations of individual elements.  

The original goal of this paper was to compare the results 
of these two conventional back-projection algorithms, and 
to experiment with techniques for measuring a single 
embedded element’s pattern.  During these efforts, we 
discovered a straightforward enhancement to the 
conventional element-excitation algorithm that, for arrays 
with elements spaced at more than l /2, dramatically 
improves its estimate’s accuracy.  We have included this 
enhancement as a third back-projection algorithm for 
comparison. 

In Section 2, we very briefly show the mathematics 
involved in the conventional back-projection to radiating 
aperture field.  This information is presented in order to 
illustrate the subtle contrast to the conventional element-
excitation algorithm. 

In Section 3, we discuss at a high level the mathematics 
behind both the conventional and the enhanced element-
excitation algorithms to show their differences, and also to 
describe the element-excitation enhancement.   

In Section 4, we describe measurements we made on our 
slotted array with two elements intentionally blocked.  We 
then do a qualitative comparison of this array’s back-
projection results from each of the three methods.  The 
two element-excitation algorithms discussed in Section 3 
require an element pattern that will be considered 
common to all the array elements.  Measurement of the 
element pattern for a fixed phased array, given only that 
array, has been a problem without a good answer.  The 
reason is that any attempt to isolate an embedded element 
has a high probability of disturbing the pattern one is 
attempting to measure.  Section 4 discusses our 



measurement of the element pattern, and shows the means 
we have employed to address that difficulty by use of the 
recently devised technique we have termed IsoFilterÔ .  

In Section 5, we quantify the accuracy of each algorithm.  
We do this by synthesizing an array with known 
excitations and element pattern, and comparing the 
excitation estimates from the three algorithms to those 
known values. 

2.  Computing Radiating Aperture Field 
Back-projection to an aperture with near-field scanning 
has been thoroughly explored.  Its application to phased-
array element alignment and element diagnostics has 
found considerable success.  [2] -[12]  Back-projection 
using spherical near-field scanning data has two 
advantages: First, the reduced presence of the standing 
wave between the array antenna and the near-field probe; 
and second, the greater aperture resolution due to the lack 
of any scan-area truncation.   

We have in the past reported on two mathematically 
equivalent theoretical approaches for back-projection.  [1] 
An algorithm based upon these approaches is described by 
the following pair of equations: 
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These yield the radiating aperture field from the far field. 

3. Element-Excitation Algorithm 
For an array antenna, the near electric field may be less 
interesting than the discrete set of element excitations.  If 
we form an array with several identical elements that have 
complex excitations Vi and common pattern P(K), then the 
array's far-field pattern E(K) will be given by the first 
form of equation (2).   
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where  
K is the direction vector in the spectral domain 
E(K) is the array's far electric field 
P(K) is the far-field pattern of a centered element, 
   assumed here to be equal for all elements 
Vi is the complex excitation of the ith element (our 
desired result) 

Ri is the location of the ith element in the aperture 

The summation S occurs over the set of elements 
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 is the element radiation intensity  
 X is the complex conjugate operator 
As it turns out, the inverse Fourier transform can be used 
to solve for the element excitations Vi at the known 
element locations Ri.  To see why this is so, it may be 
helpful here to review briefly a few basic properties of the 
Fourier transform [14].  These properties are normally 
written using time t and frequency w as the two domains, 
so we will repeat the relevant properties in that form.  In 
our equation (2) above, time t corresponds to position 
vector R in the aperture domain, and frequency w 
corresponds to the direction vector K in the spectral 
domain.  Extension to multiple dimensions is reasonably 
straightforward [13].  Part of that extension is that the 
quantity w t is replaced with the dot product K×R.  Note 
that so far in this discussion, both time and frequency are 
continuous, not sampled. 
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(3) 
where  

Û  is the Fourier transform operator 
d is the impulse or Dirac delta function 
t0 , a, and b are arbitrary constants 
* is the convolution operator 

We can easily combine the properties in (3) above to 
show the inverse continuous 3D Fourier transform of the 
summation in (2) above by inspection: 
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For elements in a plane, the transform collapses to 2D 
(with proper alignment of the basis vectors).  Similarly, 
when the elements are in a line, the transform collapses to 
1D.  This discussion concentrates on the 2D case, with the 
elements in the X-Y plane. 

Equation (4) above gives the incorrect impression that the 
result of an inverse FFT of the ratio will provide a train of 
impulses on output, with one impulse per element.  The 
reason this does not happen is the truncation of the 
spectral domain (due to our lack of information) where 
|[Kx, Ky]| > 2p/l .  This truncation can be thought of as a 
windowing function W(K) that is zero outside this 
boundary.   



By default, W(K) is the Circ function (=1 inside, =0 
outside), which has the inverse transform of a Bessel 
function w(R)=J1(a|R|)/(a|R|) [2], which is circularly 
symmetric.  This transform pair is shown graphically in 
Figure 1 below. 
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Figure 1.–Impulse Response -Uniform Circular Truncation 

The convolution property in (3) shows that w(R) will then 
be convolved with each of these elemental impulses.  
Since convolution with an impulse is merely a shift 
operation, each desired impulse in the spatial domain will 
be replaced with a weighted copy of the left-hand plot in 
Figure 1, shifted to be centered at that element location.  
The resulting distribution will be the sum of those 

weighted convolutions, SVi w(R-Ri). 

The ability to quantify the excitations at the known 
element locations Ri depends greatly on the value of 
w(R---- Ri) evaluated at the other element locations.  For 
element k, for example, the error e in the aperture image 
at R=Rk is equal to  
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There is a common misperception that the resolution of an 
aperture back-projection should be l /2.  If the K-space 
truncation were a square with 4p/l  on each side, then this 
would be the case.  However, the region of K space that 
corresponds to real aspect angles has a circular outline 
with diameter equal to 4p/l .  Since the circular truncation 
window is smaller than the square would be, the location 
of the lobe's first null in the spatial domain is further out 
than l /2, at |Ri| = 0.61l  [2].  The second null occurs at 
1.13l , and subsequent nulls are evenly spaced about every 
0.5l  relative to the second null.  These null locations are 
shown in Figure 2 below.  From the null spacings above, 
one can rapidly see that there is no element spacing that 
will drive the result of equation (5) above to zero.  If we 
space our elements at 0.61l , depicted by the vertical red 
lines in Figure 2, then the first null overlays the adjacent 
elements (i=k±1), but there is still a significant 
contribution from i=k±2, i=k±3, and i=k±4.  To make 
matters worse, a 2D grid of elements will also have 
elements at radial distances in between the red lines 
shown. For arrays whose elements are spaced more than 
l /2 apart, and certainly more than 0.707l , there are some  

 

Figure 2. – Null Locations in Circ Function Transform 

straightforward options for improving the accuracy of the 
element-excitation estimate.  The key to this improvement 
is minimizing the sum in equation (5).  The best way to do 
that, when possible, is to find a spectral truncation 
function W(K) whose inverse transform w(R) places nulls 
at all the other element locations.  The only restriction on 
this W(K) is that it must be zero for all |K| > 2p/l . 

Our measured array is rectangularly packed, so our ideal 
w(R) should have regularly spaced nulls on an X-Y grid.  
A uniform rectangular spectral window has these 
properties, and the width and height of the window 
controls the spacing between the nulls.  Because our 
element spacing is 0.72l  (>0.707l ), the appropriate 
rectangular window can fit completely inside the |K|=2p/l  
circle.  We apply and compare this spectral window in the 
sections below. 

Note that the true aperture-field computation discussed in 
Section 2 does not offer the option of altering the spectral 
truncation window W(K).  While doing so might help 
identify bad elements in an array, the resulting aperture 
distribution would represent neither radiating aperture 
field nor element excitation. 

4. Measurements 
In this Section we apply the three back-projection 
techniques to measured data.  At MI Technologies we 
have measured a flat plate slotted array using spherical NF 
scanning.  This 18-inch (45.7 cm) diameter array operates 
at frequencies near 9.375 GHz; it is linearly polarized and 
has first sidelobes that lie approximately 30 dB below the 
main beam peak.   A photograph of this antenna is shown 
in Figure 3.  For the purpose of this comparison, the two 
elements identified in Figure 3 were blocked with 
metalized tape.  The three aperture distributions were 
evaluated first as 3D images, and then as 2D line cuts 
through a blocked element. 



The two element-excitation algorithms we evaluated each 
require as input a far-field pattern that is assumed to be 
common to all elements.  This average element pattern 
was obtained by a novel method that we describe.   

The aperture-field back-projection was computed in a 
manner based upon straightforward application of 
Equation (1).  To compute the element-excitation back-
projections, the contribution of the element pattern to the 
plane wave spectrum was removed by dividing out the 
radiation intensity of the element as indicated in equation 
(2).  The element excitations were computed using both 
the conventional approach, where W(K) is always a 
uniform circle, and the enhanced approach, where for this 
array W(K) is a uniform rectangle. 

To measure the element pattern, all the elements of the 
array except one were blocked by use of metalized tape.  
The pattern of the single remaining unblocked element 
was then measured by spherical scanning.   

 

Figure 3. – Overlay of Element Map and Photograph of the 
18 inch Flat Plate Array with the Blocked Elements Marked.  
Element Left Uncovered Shown by Circle and A Photo of it 
Appears in the Inset. 

Because the unblocked element was not centered on the 
rotational center of the spherical scanner, to obtain an 
element pattern appropriately common to all the elements 
of the 18 inch array, a translation operation was carried 
out using IsoFilterTM.  The translation feature has the 
effect of relocating the origin relative to the antenna, 
placing it at the position of the unblocked element.  The 
IsoFilterTM technique has the additional advantage that 
modal filtering significantly improves the accuracy of the 
relative pattern, permitting the unimportant modes to be 
eliminated from consideration. The equatorial far-field 
pattern of the individual element is plotted over a 
hemisphere in  
Figure 4.  Notice that the pattern is very broad in the plane 
perpendicular to the axis of the slot and more narrow in 

the plane containing the axis of the slot.  The polarization 
is that of a magnetic dipole with its axis along the slot.  It 
is well known that a slot behaves as a magnetic source, so 
this measured pattern is consistent with our expectation.  
Examination of a similar plot for the far-field phase shows 
a total variation of approximately 20 phase degrees. 
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Figure 4. – Far-Field Pattern of Individual Element 
Measured with Spherical Near-Field Scanning 

When this element pattern is used in conjunction with the 
far-field pattern from spherical near-field scanning, the 
element excitation image of Figure 5 results.  This image 
is comparable to those published earlier. [1]  We compare 
the difference between images formed from the aperture 
field and element excitation: We see in Figure 6 that when 
the amplitude is plotted along a line in the aperture 
passing through the blocked element, the element 
excitation function produced resolution similar to that of 
the aperture field.  However, the 'hole' in the two 
conventional distributions contains a peak rather than the 
minimum amplitude we expect.  This feature is brought 
about by the convolution of the resolution function w(R) 
with the element excitations.  It can be reduced by 
‘tuning’ the window function W(K), as discussed in 
Section 3, to place nulls in w(R) at the X and Y element 
spacings. Figure 7 was produced by finding element 
excitations using this uniform rectangular window W(K).  
Note how the distribution at the taped elements now forms 
deep nulls without a significant artificial peak, -  Figures 
6, 7. 

5. Accuracy Assessment 
While the imaging of measured data gives a qualitative 
comparison of the different diagnostic techniques, one 
cannot claim that one of these results is more accurate 
than the others.  In order to do that, one must know what 
the correct answer is. To do that, we used synthesized 
data, where the element excitations and the common  
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Figure 5. – Amplitude of Element Excitation Function 
                     Produced with Uniform Circular W(K) 
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Figure 6. – Horizontal Amplitude Trace Through Taped 
Element 
     Black: Amplitude of Aperture Field 
     Blue: Amplitude of Element Excitation Function  
                Produced with Uniform Weighting 
     Red: Amplitude of Element Excitation Function 
                   Produced with Tuned W(K) 

element pattern are known exactly.  Our model was a two-
layer array of dipoles.  The two layers were spaced in Z at 
l /4, with one layer offset 90° in phase from the other to 
suppress the back lobe.  These elemental dipole pairs 
were separated in X and Y by the same amount as the 
elements in our slotted array, about 0.72l , to form a 21-
by-21 array.   

The element weights started as a simple Hanning function 
in X times a Hanning function in Y.  Three of the 
elements then had their weights modified as follows: 

Element (15,15) set to -60 dB, 180° 
Element (5,8) offset +4.609 dB, +10° 
Element (13,6) offset -1.549 dB, -5° 
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Figure 7. – Amplitude of Element Excitation Function 
                     Produced with Tuned W(K) 

The model synthesized the response of a spherical near-
field (SNF) probe to both the full array and to a single 
centered element.  We then processed the SNF data to 
produce three aperture distributions: 
1. Radiating aperture field 
2. Element excitation with W(K)= the Circ function 

3. Element excitation with W(K) tuned for DX and DY 
The horizontal cuts through the -60 dB element are shown 
in Figure 8 below.  Computing element excitation without 
tuning the spectral window provides a slight improvement 
over the radiating field estimate of the excitation.  Only 
the element excitation with the tuned spectral window has 
removed the dimple at the location of the 'bad' element.  
Similarly, the horizontal cuts through the element with a 
5° perturbation are shown in Figure 9 below.   

The errors evaluated at the 'bad' element locations are 
shown in Table 1 below. 

Table 1 

 Amplitude Errors Phase Errors 

 Evaluation Method Evaluation Method 

Case 1 2 3 1 2 3 

15, 15 53.0 49.0 1.3 0.4 0.0 0.4 

5, 8 2.5 1.7 0.2 3.5 2.8 0.0 

13, 6 1.4 1.1 0.1 6.2 3.9 0.0 

To compare the accuracy over all the elements, we 
computed the cumulative density function (CDF) for each 
error distribution in both amplitude (in Figure 10) and 
phase (in Figure 11).   These plots show the probability 
that the error's magnitude will be less than the value along 
the bottom of the plot. 



 

Figure 8 –Amplitude Accuracy Comparison 

 
Figure 9 – Phase Accuracy Comparison 

 

Figure 10 – Amplitude Error CDFs 

 

Figure 11 – Phase-Error CDFs 

6. Conclusions 
We have compared three methods for estimating the set of 
element excitations that lead to a measured SNF pattern.  
These methods include two traditional techniques: back-
projection to the radiating aperture field, and 
transformation after dividing by the element pattern.  We 
introduced an alternative technique of tuning the spectral 
truncation window W(K) to improve the orthogonality of 
the impulse responses w(R) over the sample set of the 
element locations.  This new technique has been coupled 
with the traditional element-excitation technique to form 
an enhanced element-excitation method. The three 
methods were compared using both measured and 
synthesized data.  In all cases, the element excitation with 
the tuned spectral window provided the best results. 
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