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ABSTRACT

A sophisticated strategy for extrapolating the samples
external to the measurement region in the helicoidal
scanning is proposed in this paper. It relies on the
nonredundant sampling representations of the electro-
magnetic field and on the optimal sampling interpo-
lation expansions of central type. Such a technique
uses the singular value decomposition method for
evaluating the outside samples. The estimation of
such data allows one to reduce the truncation error
affecting the field interpolation in the zone close to
the ends of the scanning cylinder, thus giving rise to
a more accurate far-field reconstruction. Some numeri-
cal tests, assessing the accuracy of the technique and
its stability with respect to random errors affecting
the data, are reported.

Keywords: Extrapolation, Helicoidal scanning, NF—~
FF transformations, Nonredundant representations of
electromagnetic fields, Truncation error reduction.

1. Introduction

Measurement techniques in the antenna near-field
(NF) region play a significant role in the evaluation
of far-field (FF) patterns and in the determination of
electrical and/or geometrical properties [1]. In par-
ticular, the pattern evaluation from NF measurements
allows one to overcome those drawbacks which, for
electrically large radiating sources, make unpractical
to measure the FF data on a conventional FF range.

Among the NF-FF transformation techniques, those
employing helicoidal scans allow a remarkable reduc-
tion of the time needed for data acquisition by means
of continuous and synchronized movements of the
positioning systems of the probe and of the antenna
under test (AUT). In particular, a uniform circular
helix with constant step in z and a nonuniform helix
with an elevation step constant in 6 have been con-
sidered in [2], [3], respectively. In both cases, a non-
redundant representation of the voltage data acquired
by the measurement probe on the considered helix has
been developed by applying the theoretical results on
the nonredundant sampling representations of electro-
magnetic (EM) fields [4]. In addition, the choice of

the helix step equal to the corresponding sample
spacing needed to interpolate the data along a genera-
trix has allowed one to obtain the required two-
dimensional optimal sampling interpolation (OSI)
formula for reconstructing the voltage at any point on
the cylinder. It is so possible to determine the NF
data needed by the classical probe compensated NF-
FF transformation with cylindrical scanning [5].

Unfortunately, the scanning region is always finite,
and thus an inevitable truncation error affects the
reconstruction in the zones close to its ends. As a
consequence, the reconstruction results to be accurate
in a zone smaller than the measurement one and this
implies a decrease of the angular region wherein an
accurate FF reconstruction is attained.

The aim of this work is to develop a sophisticated
strategy for extrapolating the samples external to the
scanning region. The estimation of such data (other-
wise equal to zero in the application of the OSI
algorithm) allows one to reduce the truncation error,
thus giving rise to a more accurate FF reconstruction.
The extrapolation process relies on the knowledge of
extra data acquired on very few peripheral rings and
makes use of the singular value decomposition (SVD)
algorithm [6] for determining the outside data.

2. Nonredundant sampling representa-
tion of the probe voltage

Since the voltage measured by a non directive probe
has the same effective spatial bandwidth of the field,
the aforementioned theoretical results on the non-
redundant representation of EM fields [4] can be
applied to such a voltage. Accordingly, if the AUT is
enclosed in a sphere of radius a and the helix is
described by an analytical parameterization r = r(£),
itis possible to consider the “reduced probe voltage”
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where A&) is a phase function to be determined. The
error, occurring when V is approximated by a
spatially bandlimited function, becomes negligible as
the bandwidth exceeds the critical value [4]
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where 8 is the wavenumber, r' denotes the source
point and R(&,r)=|r(€)~-r!|. Therefore, such an
error can be controlled by choosing a bandwidth equal
to X'Wg, x' > 1 being an excess bandwidth factor.

According to the results in [4], a nonredundant sam-
pling representation of the voltage on a helix with
constant angular step A@ (see Fig. 1) can be obtained
by using the following expressions for the optimal
phase function and parameterization:
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where s is the arclength of the helix, ¢ is the unit
vector tangent to it at the observation point P, and R
is the unit vector from the source point to P.
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Figure 1 - Helicoidal scanning

The coordinates of P, when imposing the passage of
the helix through a given point F; of the generatrix
at ¢ =0, are:

x=d cos(p—¢;)
y=dsin(p—¢;) ®)
z=d cotf

where @; is the value at F, of the angular parameter ¢
describing the helix, 8 =k, and d is the cylinder
radius. Such a helix can be viewed as intersection of
the cylindrical surface with the line from the origin to

a point moving on a spiral which wraps the sphere of
unit radius. In order to allow the two-dimensional
interpolation, the helix step A@ must be equal to the
sample spacing needed to interpolate the voltage
along a generatrix [7]. Then, the parameter k is such
that the step, determined by the consecutive inter-
sections P(¢) and P(p+2m) of the helix with the
cylinder generatrix, is A6=2n/(2M +1), with
M =Int[¥YM'1+1 and M'=Int[¥'Ba]+1. According-
ly, being A@=2nk, it follows that k=1/(2M +1).
The function Int[x] gives the integer part of x and
X >1 is an oversampling factor.

Figure 2 - Geometry in the plane 7, 7

It can be verified that the extreme values of R-7 are
determined by considering the intersection of the
plane defined by 7 and the unit vector 7 (pointing
from the origin to P) with the cone with the vertex at
P and the generatrices coincident with the tangents to
the source ball (Fig. 2). Denoting by R12 the related
unit vectors and by & the angle between 7 and 7,
results:
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By substituting (6) into (3) and taking into account
that dr = 7-7ds, we obtain:

,

y=8 Jl—az/rzdr=/3«/r2—az—ﬂacos'](%j (8)
0

On the other hand
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By taking into account (10) and substituting relations
(7) and (9) in (4), it results:

4
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As can be seen, the optimal parameter & is propor-
tional to the curvilinear abscissa along the spiral
wrapping the sphere of unit radius. Since such a
spiral is a closed curve, it is convenient to choose the
bandwidth We such that & covers a 21 range when
the whole curve on the sphere is described. As a
consequence,

(12)
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In the light of these results, the voltage at any point
of the helix can be reconstructed via the OSI formula:
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where ny =Int((E-&(g;))/AE) is the index of the
sample nearest (on the left) to the output point, 2¢ is
the number of retained samples and
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Moreover,
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are the Dirichlet and Tschebyscheff Sampling func-
tions, respectively, Tn~(+) being the Tschebyscheff
polynomial of degree N"=N—N"and & =gA¢.

Expansion (14) can be properly employed to evaluate
the voltage at any point P on the cylinder. In fact, it
allows the evaluation of the “intermediate” samples,
namely the voltage values at the intersection points
of the helix with the generatrix passing through P.
Once these samples have been determined, because of
the particular choice of A8, the voltage can be recon-
structed via the OSI expansion:

my+p
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where 6, = 6,,(9) = 6(g;)+k¢+ mAB=6, + mAG,
my =Int{(6-6,)/A8], M"=M-M', V(6,,) are the
intermediate samples, and the other symbols have the
same meaning as in (14).

3. NF-FF transformation

The algorithm described in the previous Section can
be applied to efficiently reconstruct the NF data,
needed for the classical probe compensated NF-FF
transformation [5], from the voltage samples acquired
on a helix wrapping a cylinder.

As previously stated, the scanning region is always
finite, and thus an inevitable truncation error affects
the reconstruction of the NF data in the zones close to
the ends. Accordingly, the reconstruction results to be
accurate in a zone smaller than the measurement one.
To overcome this drawback, a sophisticated strategy
for extrapolating the samples external to the scanning
region will be developed in the next Section.

As shown in [5], the modal coefficients a,, and b,
of the cylindrical wave expansion of the field radiated
by AUT are related to: a) the two-dimensional Fourier
transforms of the output voltages V and V' of the
probe for two independent sets of measurements (the
probe is rotated 90° about its longitudinal axis in the
second set); b) the modal coefficients of the cylindri-
cal wave expansion of the field radiated by the probe
and the rotated probe, when used as transmitting
antennas. Once the modal coefficients are determined,
the FF components of the electric field in the spheri-
cal coordinate system (R, @, D) can be evaluated by:
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As well-known, the summations in these last
relations can be efficiently performed via the fast
Fourier transform (FFT) algorithm.

4. Extrapolation algorithm

This Section deals with the strategy for extrapolating
the NF samples external to the scanning region. In
order to explain the methodology, let us consider the
upper half of the measurement cylinder. Besides the
regular samples acquired via the helicoidal scanning,
let us assume the knowledge of the probe voltages on
J rings spaced at a fixed step Az, from the top of the
cylinder. On each of these rings, the extra samples are
known at the points specified by
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On each cylinder generatrix fixed by ¢, the reduced
voltage at the intersection points P(@ ;,9) with the
extra rings can be evaluated via the OSI expansion [4]
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where 24 is the number of retained samples along ¢,
n,=Int(¢/A¢;), and N; =Nj—NJf .

When applying (19) to each of the points P8 @)
Just p unknown outside samples V (8,,) are always
involved, since the other can be reconstructed via
(14). Accordingly, by centring the OSI formula (19)
on the first known intermediate sample at §,, so
that the index m assumes negative values for the
external samples to be estimated, for each j=1,...,J
we get:

70,3 70,100 (-0,)210{6-0,)-
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where p < p is the number of external samples to be
estimated. These J equations can be rewritten in
matrix form as A x =b, where b is the sequence of
the known terms, A is the J X p matrix, whose
clements A, =DM(T9J- = 6,,) £24(0; - 0,,) are given
by the weight functions in the considered OSI
expansion and x is the sequence of the unknown
outside samples V(6,,), with m=-p,..,-1. A
solution, which is the best approximation in the least
squares sense of the linear system (28), can be
obtained by using the SVD technique. A quite similar
procedure can be used for extrapolating the samples
external to the lower end of the cylinder.

Once the outside samples relevant to the considered
generatrix have been estimated, the voltage values at
any point on it can be evaluated via (19).

It must be stressed that the matrix A depends on the
samples position on the considered generatrix. In fact,
the z-coordinates of the regular samples (those ob-
tained as intersection between the generatrix and the
helix) decrease as the azimuthal angle ¢ increases. In
order to obtain a regularized solution of the linear
system (28), a Tikhonov regularization approach can
be applied [6]. Such a solution corresponds to mini-
mize the following functional:
2
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o being the regularization parameter. Thus, we can
write the regularized solution Xreg and the corre-
sponding residual vector lg—égreg in term of the
SVD of A in the generic form
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where H denotes the conjugate transposition opera-
tor, 0;, with i = I,..., p, are the singular values of
A, ordered from the maximum to the minimum
value, f;=07 / (o‘,?‘ + ocz) are the corresponding filter
factors, and Y;, v; are the left and right singular
vector of A, respectively [6]. The choice of the
optimal parameter ¢ to be used can be made by using
the L-curve. Such a curve is a plot in log-log scale
for all valid regularization parameters of the norm of
the regularized solution x _ , versus the correspond-

ing residual norm of b —-ér_;reg. The L-curve displays
the compromise between the minimization of these
two quantities, which is the heart of any regulariza-
tion method. With reference to the Tikhonov regu-
larization, the best compromise is represented by the
distinct corner separating the vertical and the

horizontal part of the curve.
5. Numerical tests

The reported numerical tests refer to a uniform planar
array of 0.6 A spaced elementary Huygens sources
polarized along the z axis and lying in an elliptical
zone on the plane y = 0, with major and minor semi-
axes equal to 16.2 A and 12 A, respectively (A being
the wavelength). An open-ended WR-90 rectangular
waveguide, operating at the frequency of 10 GHz, is
chosen as probe. The radius d of the cylinder is 18A
and its height 2k is 140A. According to the described
sampling representation, J = 6 extra rings have been
acquired and added at both cylinder ends. They are
spaced at Az = 1A. It is worthy to note that, on each
side of a given generatrix, the number of outside



samples is p=6. A Tikhonov regularization ap-
proach has been applied to obtain the best estimation
of the outside samples for all the considered genera-
trices. We have assumed p =17 in the extrapolation
process of the outside samples, whereas g = 6 has
been adopted both in (14) and in (27) to obtain the
involved known samples and the extra data, respec-
tively. It must be stressed that the SVD is applied to
a small matrix with a negligible computational effort.

Figure 3 shows the amplitude of the output voltage V
on the cylinder generatrix at ¢ = 90°. It has been
reconstructed without using the extrapolation process
and putting the outside samples equal to zero. As can
be seen in Fig. 4, by using the proposed estimation
procedure, the reconstruction is very accurate not only
in the whole measurement region, but also in a zone
outside it. It is worthy to note that, in both cases,
p = 6 has been adopted when applying (19) for the
reconstruction. A further reconstruction example rele-
vant to the generatrix at ¢ = 120° is reported in Fig.
3. In order to assess more quantitatively the effective-
ness of the approach, the maximum and mean-square
reconstruction errors have been evaluated by compar-
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Figure 3 - Amplitude of the probe voltage V on the
generatrix at ¢ =90°. Solid line: exact. Crosses:
reconstructed without estimated outside samples.
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Figure 5 - Amplitude of the probe voltage V on the
generatrix at ¢ =120°. Solid line: exact. Crosses:
reconstructed with estimated outside samples.
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ing, on a cylindrical grid of height 1504 (slightly
greater than the scan region), the exact values of V
and those reconstructed with and without the esti-
mated outside samples. Figure 6 shows such errors,
normalized to the voltage maximum value on the
cylinder. As can be seen, the errors evaluated by con-
sidering the estimated samples decrease quite rapidly
until very low levels are reached. On the contrary,
those obtained without considering them saturate to
constant values, due to the truncation error present in
the zones close to the ends. The algorithm stability
has been assessed (see Fig. 7) by adding random errors
to the exact samples. These errors simulate a back-
ground noise, bounded to Aa (dB) in amplitude and
with arbitrary phase, and an uncertainty on the data of
xAa, (dB) in amplitude and *Ao(degrees) in phase.

Figure 8 reports the antenna FF pattern in the E-plane
reconstructed by taking into account the estimated
samples. As can be seen, the exact and recovered
fields are practically indistinguishable. A zoom of the
far out side lobe region relevant to the reconstruction
obtained without and with the estimated samples is
reported in Fig. 9 and 10, respectively. Ascan be
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Figure 4 - Amplitude of the probe voltage V on the
generatrix at ¢ =90°. Solid line: exact. Crosses:
reconstructed with estimated outside samples.
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Figure 6 - Normalized reconstruction errors.

Dashed line: without estimated outside samples. Solid

line: with estimated outside samples.
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Figure 7 - Amplitude of the probe voltage V on the
generatrix at ¢ =90°. Solid line: exact. Crosses: re-
constructed with estimated outside samples from error
affected data.
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Figure 9 - Zoom of the E-plane pattern. Solid line:
exact. Dots: reconstructed via the NF-FF transfor-
mation without estimated outside samples.

seen, the reconstruction obtained by considering the
estimated samples is more accurate, thus assessing
the effectiveness of the proposed technique.

It is worthy to note that the number of employed
samples for reconstructing the NF data on the con-
sidered cylinder (22 =160A) is 27 775, less than half
of that (60 103) required by the approach in [2] and
significantly less than that (81920) needed by the
approach in [5]. In particular, the number of “extra”
samples on the rings (at the ends of the scanning
cylinder) is 1112,
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