NSI-MI Technologies

Industry Leading Microwave Antenna Measurement Solutions

info@NSI-MI.com | www.NSI-MI.com
Automotive
- Integrated Antenna Characterization
- Radio, Wireless, Satellite, GPS Link Testing
- Full Scale Vehicle Testing
- Ground Plane Simulation and Testing

Satellite
- RF Testing for Flight Hardware
- Near-Field and Compact Range Solutions
- SFD, EIRP, GD and GT Measurements
- Payload Testing

Defense
- High Power Testing
- Radar Cross Section (RCS)
- Scene Generation
- Phased Array Performance
- Radome Characterization

Wireless
- Base Station Antenna Characterization
- Wireless Handset Testing
- MIMO Antenna Testing
- 5G mmWave Applications

Research
- mmWave Antenna Measurements
- On-Chip Antenna Testing
- Multi-Purpose Antenna Test Systems
- Radio Astronomy Applications

Aerospace
- Far-Field Solutions
- Antenna Characterization
- Payload Testing
- Array Calibration
- SAR Applications
WORLDWIDE FOOTPRINT
Offices throughout United States and Europe
Global coverage of fully trained representatives
See our full listing of partners at www.nsi-mi.com

ENGINEERING
Mechanical, Electrical, Software Engineers
Systems & Project Engineers
Industry Leading Experts

TEST SERVICES
Six (6) Fully Equipped In-House Test Facilities
Compact Range, Near-Field & Far-Field Configurations
Antenna, Radome and RCS Testing

CERTIFICATIONS/ACCREDITATIONS
ISO 9001:2015 Accredited
A2LA Accredited
DDTC Registered
Compact Antenna Test Ranges are ideal for testing a wide variety of RF equipment and antennas measuring amplitude and phase patterns from L-band to mmWave bands. Compact Range Systems offer users the advantages of an indoor far-field configuration, with the convenience of environmental and security control. The ability to control temperature, eliminate wind deflections, avoid the elements as well as reduce maintenance costs are all advantages of this product.
NSI-MI Technologies designs and manufactures more Compact Range Reflector-Based Systems than all other providers combined. Each compact range reflector is made to exacting standards for optimum illumination and uniformity. The reflector’s main body is the structural backbone of the composite assembly and provides the structural integrity to reduce weight. All reflectors have a life expectancy exceeding 20 years.
NSI-MI’s Vertical Planar Near-Field Systems range in size from portable table-top XY Positioners, ideal for measuring high frequencies for small aperture antennas, to very large precision XY Positioners, used for testing satellite and radar antennas.
Horizontal Planar Near-Field Systems incorporate a next generation precision closed loop servo drive system and a highly engineered structure. These systems are ideal for large aperture antennas, larger arrays and reflector antennas that require a zenith orientation for testing.
Near-Field Systems

Robotic Antenna Test Systems

The 8-Axis Robotic Antenna Measurement System is ideal for measuring antennas up to 2.4 m x 1.2 m (8 ft x 4 ft). It is well suited to perform testing of high, medium and low gain antennas, since it offers PNF, CNF and SNF capabilities.

The system uses a 6-axis precision robotic arm that acts as Y-axis for PNF & CNF and Theta-axis for SNF acquisitions. It also incorporates a small, 19.7 in. (500 mm) diameter, rotary positioner that is used as a Phi-axis for CNF and SNF acquisitions. This positioner can support AUT loads of up to 4,500 kg (10,000 lb). Lastly, the Robotic Antenna Test System also uses a precision linear translation positioner that is used as an X-axis for PNF acquisition and robot repositioning.
The spherical configuration provides the most comprehensive set of measurement results for characterizing an antenna. NSI-MI offers a large variety of Spherical Near-Field Antenna Measurement Systems of various sizes and configurations: Roll over Azimuth Systems, Swing Arm over Azimuth Systems, Stationary AUT Systems, and Arch over Azimuth.
Far-Field Systems

Outdoor Far-Field

In an Outdoor Far-Field Range configuration, the test antenna is installed on the test positioner located on a tower, roof or platform outside the instrumentation control room. The receiver front end (Local Oscillator) is usually located at the base of the test positioner, with the mixer connected directly to the test antenna port. This configuration requires only a single RF path through the positioner, greatly simplifying system design. Use of the remote front end also minimizes local oscillator power loss to the mixer and maximum system sensitivity.
An Indoor Far-Field Anechoic Chamber has the same basic design criteria as an outdoor range except that the surfaces of the room are covered with RF absorbing material. Testing indoors offers many advantages to conventional outdoor ranges including improved security, avoiding unwanted surveillance and improved productivity due to less time lost because of weather and other environmentally related factors.
NSI-MI Technologies designs and manufactures specialized Motion Simulation Systems to precisely simulate the movement of physical entities for use in virtual reality trainers and testers and for physical testing needs. We specialize in the areas of Aerospace and Defense; enabling simulation for missiles, decoys and more.
Pointing and Tracking Systems are designed to control the line of sight of an ever increasing array of sensors, weapons and other payloads of all sizes used in Scientific, Military and Commercial endeavors.

NSI-MI has developed state-of-the-art technologies for the exact alignment of the lines of sights utilizing a combination of mechanical, optics plus control electronics and software algorithms.
If accelerated delivery schedules or budget constraints are driving purchasing decision for an RF measurement testing solution, NSI-MI offers economical, pre-engineered systems suitable for most applications and testing needs. Our turnkey solutions are designed for straightforward assembly, in either an anechoic chamber or open facility, depending on the type of system and test application. In many cases, these systems can be delivered and installed in less than one day.

Planar Near-Field Measurement System
0.9 x 0.9 meters
Planar Near-Field Measurement System
0.9 x 0.9 meters

Spherical Near-Field Measurement System
0.7 meters

Spherical Near-Field mmWave Antenna Measurement System
Precision and accuracy of EMC and RF Measurement Systems can be affected by their environment. For indoor ranges, an Anechoic Chamber must be designed, implemented and constructed with system and measurement requirements in mind. NSI-MI brings over 50 years of combined expertise for chamber construction management. Expert design, execution, and the perfect combination of range and system selections are the recipe for an optimum test facility; whether it is antenna measurements, radar cross section, hardware in loop or electromagnetic compatibility.
Test Services
NSI-MI Technologies also offers world class testing facilities for commercial, government and academic use. Our industry leading ranges are available to support your specific requirements. Our measurement facilities, combined with our expert staff of engineers, can tackle any unique test needs with precision and accuracy. Our facilities are A2LA accredited and our equipment is calibrated with NIST traceability providing you with the assurance, that we can accurately and consistently characterize your antennas, radomes and other devices.
NSI-MI Technologies’ Customer Support services leverage years of engineering knowledge and experience in antenna, radome, and RCS measurements. There are a multitude of ways to access these services in order to make incremental improvements to your range efficiency. Whether you are seeking short-term or more permanent support, NSI-MI has the service to address your needs.

- Maintenance Plan
- Software Support
- Precision Alignment Services
- Chamber Imaging & Range Probing Services
- Equipment Refurbishment
- Range Relocation
- Training & Mentoring Programs
- Range Assessment
NSI-MI Technologies has an extensive history in the development of innovative antennas for precision antenna test and measurement applications, as well as other wireless applications. Our antennas are designed and manufactured in-house by our talented staff of antenna design engineers with decades of experience. Our antenna products and services fulfill the needs of numerous markets, including the Defense, Aerospace, Automotive, Satellite Communications, and Wireless Industries.
NSI-MI Technologies’ mechanical expertise has enabled us to design and manufacture complex structures, including single-axis and multi-axis positioning products. Our Mechanical Products are used in various test and measurement, pointing/tracking, and other general purpose single/multiple payload positioning applications.
Feed Positioners

Horizontal Slides

XY Positioners
NSI-MI Technologies’ Electronic Products are designed for fast and accurate data acquisition and reporting. Our knowledge and expertise enables us to configure RF Subsystems to be compatible with a wide variety of instruments, software, positions, optics and antennas.
Dedicated to solving the unique challenges of microwave range operation and management, NSI-MI provides the most sophisticated software for measuring and analyzing antenna patterns. Our software is compatible with nearly all measurement equipment in the industry and is regularly updated to support new motion controllers and RF equipment. The intuitive user interface, extensive scripting capability and broad data management functions give power and flexibility to solve the toughest measurement challenges.